Prolog Techniques Contents

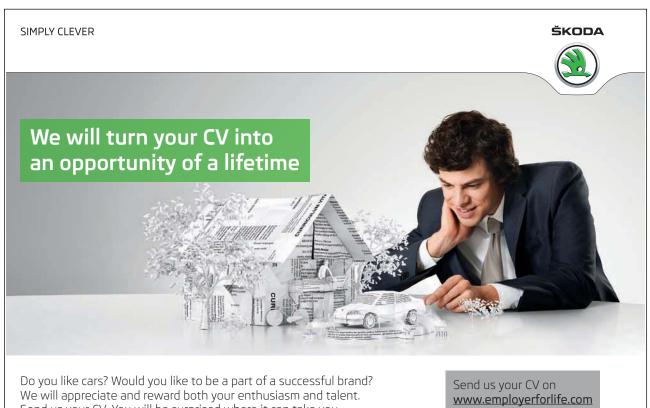
Contents

	Preface	11
1	Accumulator Technique	13
1.1	A Simple Example	13
1.2	Hand Computations	14
1.3	Further Examples	14
1.4	Pseudocodes	23
1.5	Generalization	26
1.6	Case Study: The Perceptron Training Algorithm	27
1.6.1	Classification Problem	27
1.6.2	Algorithm	27
1.6.3	Implementation	29
2	Difference Lists	37
2.1	Implementations of List Concatenation	37
2.2	Implementations of List Flattening	42
2.2.1	Project: Lists as Trees & flatten/2	43
2.2.2	Flattening Lists by append/3	48
2.2.3	flatten/2 by the Difference List Technique	49
2.2.4	Comparing Different Versions	49
2.3	Implementations of List Reversal	50
2.3.1	Program Transformations	51

Download free eBooks at bookboon.com

Prolog Techniques Contents

2.3.2	Difference Lists as Accumulators	57
2.4	Case Study: Dijkstra's Dutch Flag Problem	57
2.4.1	Basic Implementation Using append/3	58
2.4.2	A More Concise Version	58
2.4.3	Using Difference Lists	59
2.5	Rotations	61
2.5.1	Rotating a List	61
2.5.2	The Perceptron Training Algorithm Revisited	64
2.5.3	Planar Rotations	65
2.5.4	Application: The Gauss–Seidel Method	69
3	Program Manipulations	75
3.1	Simple Database Operations	75
3.1.1	Basic Database Manipulation	79
3.1.2	Changing the Database	80
3.1.3	File Modifications	85
3.1.4	Updating right_to/2 and people.pl	87
3.1.5	Automated Saving of Selected Predicates	87
3.1.6	Miniproject: Modelling a Stamp Collection	91
3.2	Case Study: Automated Unfolding	95
3.2.1	Elementary Unfolding	95
3.2.2	Complete One Step Unfolding	104
3.2.3	Rearranging Clauses	106
3.3	Dijkstra's Dutch Flag Problem Revisited	108



Discover the truth at www.deloitte.ca/careers

Prolog Techniques Contents

3.3.1	Problem Generalization and First Solution	108
3.3.2	Enhanced Implementations	111
4	Exploratory Code Development	117
4.1	A Nursery Rhyme	117
4.1.1	First Preliminary Implementation	119
4.1.2	Another Preliminary Implementation	124
4.1.3	The Final Version	125
4.1.4	Other Approaches	127
4.2	Project: 'One Man Went to Mow '	132
4.3	Chapter Notes	139
A	Solutions of Selected Exercises	141
A.1	Chapter 1 Exercises	141
A.2	Chapter 2 Exercises	145
A.3	Chapter 3 Exercises	157
A.4	Chapter 4 Exercises	167
В	Software	177
D	Software	1//
C	Glossary	179
	References	183
	Index	185

Send us your CV. You will be surprised where it can take you.

Prolog Techniques List of Figures

List of Figures

1.1	Hand Computations for new sum/2	15
1.2	Hand Computations for rev/2	16
1.3	Hand Computations for min/2	17
1.4	Suggested Hand Computations for from <i>to/3</i>	18
1.5	Hand Computations for <i>cnt/3</i>	19
1.6	Hand Computations for <i>palin/1</i> — <i>success</i>	21
1.7	Hand Computations for <i>palin/1</i> — <i>failure</i>	21
1.8	Typical Clause Structures of a Predicate with an Accumulator	27
1.9	Generalized Clause Structures	27
1.10	A Linearly Separable Data Set	28
1.11	Classifying a Point	29
1.12	A Single Updating Step	30
1.13	Applying the Perceptron Training Algorithm	31
2.1	Difference List	39
2.2	List Concatenation by Difference Lists	40
2.3	Tree Representation of $[a,[b,[],[c,a],e]]$	44
2.4	Declarative Reading of (P-2.3)	50
2.5	Illustrating Clause (b2) in (P-2.6)	56
2.6	Illustrating Exercise 2.9	57
2.7	Rotating by Difference Lists	61
2.8	Hand Computations for averages/2	62

Download free eBooks at bookboon.com

Prolog Techniques List of Figures

2.9	Rotating a List with Four Entries	64
2.10	The Original List and its Rotated Image	65
2.11	The Original Matrix A and its Rotated Image $A^{(rot)}$	66
2.12	Hand Computations for Rotation in the Plane	67
3.1	The Initial Seating Arrangement	76
3.2	Rectangular Table	77
3.3	After George's Departure	81
3.4	After Tracy's and Joe's arrival	82
3.5	File Organization for the Round Table Example	85
3.6	The File people.pl after the Interactive Session	87
3.7	The File committee.pl	89
3.8	The File committee.pl	89
3.9	Interactive Prolog-Assisted Program Transformation: Session I	97
3.10	Interactive Prolog-Assisted Program Transformation: Session II	98
3.11	Unfolding, Experiment 1: Disassembling clause 4 of a/5	99
3.12	Unfolding, Experiment 2: Disassembling clause 3 of $c/2$	99
3.13	Unfolding, Experiment 3: Experiments 1 & 2 followed by appropriate	
	unification	100
3.14	Unfolding, Experiment 4: Experiment 3 followed by new clause creation and	
	database update	101
3.15	Illustrative Example of Intended Database Updates	111
3.16	Top Level Definition of def_encolour dl/1	112
3.17	Example Session for Exercise 3.19	116

Prolog Techniques List of Figures 4.1 The Rhyme's Simplified Pattern 118 4.2 Exploring Details of the Rhyme's Structure 124 4.3 Desired Behaviour of song/0 133 A.1 Annotated Hand Computations for from to/3 141 A.2 Hand Computations for mult/3 144 A.3 Illustrating the Second Clause of *dl/*2 154 A.4 The Last Two Customers Swap Places 159 A.5 Automated Solution of Exercise 2.9, Part (c) 163 A.6 Database Changes Brought About by cosu/3 166 A.7 Search Tree of the Query ?- int(1,I) 172


Prolog Techniques List of Tables

List of Tables

1.1 1.2 1.3 1.4	Algorithm 1.4.1 and Related Hand Computations (Fig. 1.2) Algorithm 1.4.2 and Related Hand Computations (Fig. 1.5) Algorithm 1.4.3 and Related Hand Computations (Figs. 1.6 & 1.7) Co-ordinates of Points in the Plane with Class Labels	24262627
2.1	Gauss–Seidel Iterations	70
3.1	Cases for swap_neighbours/2	84
4.1 4.2	Rhyme Structure CPU Times for Versions of the Query ?- rhyme_prel(V, R)	127 129
A.1	Algorithm A.1.1 & Prolog Clause Correspondence (Example 1.6)	144

Download free eBooks at bookboon.com

